Skip to main content
Log in

Studies on the Antagonistic Behavior Between Cyclophosphamide Hydrochloride and Aspirin with Human Serum Albumin: Time-Resolved Fluorescence Spectroscopy and Isothermal Titration Calorimetry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interactions between cyclophosphamide hydrochloride (CYC) and aspirin (ASA) with human serum albumin (HSA) were investigated by measuring fluorescence anisotropy, poly-dispersity index, and time-resolved fluorescence. Also, isothermal titration calorimetry (ITC) was performed. The fluorescence spectra of the drugs exhibited an appreciable hypsochromic shift along with an enhancement in the fluorescence intensity. The gradual addition of HSA led to a marked increase in fluorescence anisotropy (r), and from this value it is argued that the drugs were located in a restricted environment of the protein. The binding constants for the ASA–HSA and CYC–HSA complexes were found to be 1.27 × 108 and 4.23 × 108 mol·L−1, respectively, as calculated from the relevant fluorescence data. The polydispersity index and size distribution of the protein–drug complex were measured at several concentrations of the drugs by the zeta potential technique, which confirmed the already obtained experimental results. From the analysis of the steady-state and time-resolved fluorescence quenching of the drugs in aqueous solutions in the presence of HSA, it was found that the quenching is static in nature. ITC experiments revealed that, in the absence of drugs, the dominant forces are electrostatic, whereas hydrophobic and weak electrostatic forces became significant in the presence of the drug. The primary binding pattern between the drugs and HSA was interpreted as a combined effect of hydrophobic association and electrostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kragh-Hansen, U., Chuang, V.T.G., Otagiri, M.: Practical aspects of the ligand binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 25, 695–704 (2002)

    Article  CAS  Google Scholar 

  2. Bertucci, C., Andrisano, V., Gotti, R., Cavrini, V.: Use of an immobilised human determined by using of other methods. Serum albumin HPLC column as a probe of drug–protein interactions: the reversible binding of valproate. J. Chromatogr. B 768, 147–155 (2002)

    Article  CAS  Google Scholar 

  3. Ni, Y., Su, S., Kokot, S.: Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as sitemarkers with the aid of parallel factor analysis. Anal. Chim. Acta 580, 206–215 (2006)

    Article  CAS  Google Scholar 

  4. Liu, X., Song, D., Zhang, Q., Tian, Y., Liu, Z., Zhang, H.: Characterization of drug-binding levels to serum albumin using a wavelength modulation surface plasmon resonance sensor. Sens. Actuators 117, 188–195 (2006)

    Article  CAS  Google Scholar 

  5. Birkett, D.L.: Drug protein binding. Aust. Prescr. 15, 56–57 (1992)

    Google Scholar 

  6. Sulkowska, A., Maciazek-Jurczyk, M., Bojko, B., Rownicka, J., Zubik-Skupien, I., Temba, E., Pentak, D., Sulkowski, W.: Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: a spectroscopic study. J. Mol. Struct. 881, 97–106 (2008)

    Article  CAS  Google Scholar 

  7. Maciazek-Jurczyk, M., Sutkowska, A., Bojko, B., Rownicka, J., Sutkowski, W.W.: Fluorescence analysis of competition of phenylbutazone and methotrexate in binding to serum albumin in combination treatment in rheumatology. J. Mol. Struct. 924, 378–384 (2009)

    Article  Google Scholar 

  8. Peters Jr, T.: All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego (1995)

    Google Scholar 

  9. Wang, Y.-Q., Tang, B.-P., Zhang, H.-M., Zhou, Q.-H., Zhang, G.-C.: Studies on the interaction between imidacloprid and human serum albumin: spectroscopic approach. J. Photochem. Photobiol. B Biol. 94, 183–190 (2009)

    Article  CAS  Google Scholar 

  10. Subramanyam, R., Gollapudi, A., Bonigala, P., Chinnaboina, M., Amooru, D.G.: Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. J. Photochem. Photobiol. B Biol. 94, 8–12 (2009)

    Article  CAS  Google Scholar 

  11. Banerjee, P., Ghosh, S., Sarkar, A., Chandra Bhattacharya, S.: Fluorescence resonance energy transfer: a promising tool for investigation of the interaction between 1-anthracene sulphonate and serum albumins. J. Lumin. 131, 316–321 (2011)

    Article  CAS  Google Scholar 

  12. Chen, C., Ge, F., Liu, D., Han, B., Xiong, X., Zhao, S.: Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J. Lumin. 130, 168–173 (2010)

    Article  Google Scholar 

  13. Carter, D., Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153–159 (1994)

    Article  CAS  Google Scholar 

  14. Li, Y.S., Ge, Y.S., Zhang, Y., Zhang, A.Q., Sun, S.F., Jiang, F.L., Liu, Y.: Interaction of coomassie brilliant blue G250 with human serum albumin: probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J. Mol. Struct. 968, 24–31 (2010)

    Article  CAS  Google Scholar 

  15. Zhang, G., Que, Q., Pan, J., Guo, J.: Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J. Mol. Struct. 881, 132–138 (2008)

    Article  CAS  Google Scholar 

  16. Matei, L., Hillebrand, M.: Interaction of kaempferol with human serum albumin: a fluorescence and circular dichroism study. J. Pharm. Biomed. Anal. 51, 768–773 (2010)

    Article  CAS  Google Scholar 

  17. Cui, F., Zhang, Q., Yao, X., Luo, H., Yang, Y., Qin, L., Qu, G., Lu, Y.: The investigation of the interaction between 5-iodouracil and human serum albumin by spectroscopic and modeling methods and determination of protein by synchronous fluorescence technique. J. Pest. Biochem. Physiol. 90, 126–134 (2008)

    Article  CAS  Google Scholar 

  18. Yuan, J.L., Lv, Z., Liu, Z.G., Hu, Z., Zou, G.L.: Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. J. Photochem. Photobiol. A Chem. 191, 104–113 (2007)

    Article  CAS  Google Scholar 

  19. Petitpas, J., Bhattacharga, A.A., Twine, S., East, M., Curry, S.: Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J. Biol. Chem. 276, 22804–22809 (2001)

    Article  CAS  Google Scholar 

  20. Hamed-Akbari Tousi, S., Saberi, M.R., Chamani, J.: Comparing the Interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: evidence for allocating the binding site. Protein Pept. Lett. 17, 1525–1535 (2010)

    Article  Google Scholar 

  21. Bojko, B., Sulkowska, A., Maciazek, M., Roownicka, J., Njau, F., Sulkowski, W.W.: Changes of serum albumin affinity for aspirin induced by fatty acid. J. Biol. Macromol. 42, 314–323 (2008)

    Article  CAS  Google Scholar 

  22. Cianferoni, A., Schroeder, J.T., Kim, J., Schmidt, J.W., Lichtenstein, M.L., Georas, S.N., Casolaro, V.: Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. J. Blood 97, 1742–1749 (2001)

    Article  CAS  Google Scholar 

  23. Ibrahim, H., Boyer, A., Bouajila, J., Couderc, F., Nepveu, F.: Determination of non-steroidal anti-inflammatory drugs in pharmaceuticals and human serum by dual-mode gradient HPLC and fluorescence detection. J. Chromatogr. B 857, 59–66 (2007)

    Article  CAS  Google Scholar 

  24. Wang, T., Xiang, B.R., Li, Y., Chen, C.Y., Zhou, X.H., Wang, Z.M., Dong, Y., Wang, Y., Fang, H.S.: Studies on the binding of a carditionic agent to human serum albumin by two-dimensional correlation fluorescence spectroscopy and molecular modeling. J. Mol. Struct. 921, 188–198 (2009)

    Article  CAS  Google Scholar 

  25. Maiti, T.K., Ghosh, K.S., Samanta, A., Dasgupta, S.: The interaction of silibinin with human serum albumin: a spectroscopic investigation. J. Photochem. Photobiol. A Chem. 194, 297–307 (2008)

    Article  CAS  Google Scholar 

  26. Bogdan, M., Pirnau, A., Floare, C., Bugeac, C.: Binding interaction of indomethacin with human serum albumin. J. Pharm. Biomed. Anal. 47, 981–984 (2008)

    Article  CAS  Google Scholar 

  27. Wang, Z., Kumar, N.R., Srivasva, D.K.: A novel spectroscopic titration for determining the dissociation constant and stoichiometry of protein–ligand complex. Anal. Biochem. 206, 376–381 (1992)

    Article  CAS  Google Scholar 

  28. Xiang, G., Tong, C., Lin, H.: Nitroaniline isomers interaction with bovine serum albumin and toxicological implications. J. Fluoresc. 17, 512–521 (2007)

    Article  CAS  Google Scholar 

  29. Li, Y., He, W., Dong, Y., Sheng, F., Hu, Z.: Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods. J. Bioorg. Med. Chem. 14, 1431–1436 (2006)

    Article  CAS  Google Scholar 

  30. Takeda, S., Terazono, B., Mishima, F., Nakagami, H., Nishijima, S., Kaneda, Y.: Novel drug delivery system by surface modified magnetic nanoparticles. J. Nanosci. Nanotechnol. 6(9–10), 3269–3276 (2006)

    Article  CAS  Google Scholar 

  31. Yuan, X., Li, L., Rathinavelu, A., Hao, J., Narasimhan, M., He, M., Heitlage, V., Tam, L., Viqar, S., Salehi, M.: SiRNA drug delivery by biodegradable polymeric nanoparticles. J. Nanosci. Nanotechnol. 6(9–10), 2821–2828 (2006)

    Article  CAS  Google Scholar 

  32. Cheng, J., Teply, B.A., Sherifi, I., Sung, J., Luther, G., Gu, F.X., Levi-Nissenbaum, E., Radovich, A.F., Langer, R., Farokhzad, O.C.: Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007)

    Article  CAS  Google Scholar 

  33. Thanos, C.G.: Improving relative bioavailability of dicumarol by reducing particle size and adding the adhesive poly (fumaric-co-sebacic) anhydride. Pharm. Res. 20, 1093–1100 (2003)

    Article  CAS  Google Scholar 

  34. Vila, A., Sanchez, A., Evora, C., Soriano, I., Callion, M.C., Alonso, M.L.: PLA–PEG particles as nasal protein carriers: the influence of the particle size. Int. J. Pharm. 292, 43–52 (2005)

    Article  CAS  Google Scholar 

  35. Wu, H., Ramachandran, C., Weiner, N.D., Roessler, B.J.: Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm. 220, 63–75 (2001)

    Article  CAS  Google Scholar 

  36. Sarker, D.K.: Engineering of nanoemulsions for drug delivery. Curr. Drug Deliv. 2, 297–310 (2005)

    Article  CAS  Google Scholar 

  37. Subramanian, B., Kuo, F., Ada, E., Kotyla, T., Wilson, T., Yoganathan, S., Nicolosi, R.: Enhancement of anti-inflammatory property of aspirin in mice by a nano-emulsion preparation. Int. Immunopharmacol. 8, 1533–1539 (2008)

    Article  CAS  Google Scholar 

  38. Belatik, A., Hotchandani, S., Bariyanga, J., Tajmir-Riahi, H.A.: Binding sites of retinol and retinoic acid with serum albumin. Eur. J. Med. Chem. 48, 114–123 (2012)

    Article  CAS  Google Scholar 

  39. Bright, F.V., Munson, C.A.: Time-resolved fluorescence spectroscopy for illuminating complex systems. Anal. Chim. Acta 500, 71–104 (2003)

    Article  CAS  Google Scholar 

  40. Chakrabarty, A., Mallick, A., Haldar, B., Das, P., Chattopadhyay, N.: Binding interaction of a biological photosensitizer with serum albumins: a biophysical study. Biomacromolecule 8, 920–927 (2007)

    Article  CAS  Google Scholar 

  41. Shannigrahi, M., Bagchi, S.: Steady-state fluorescence and photophysical properties of a ketocyanine dye in binary surfactant and polymer–surfactant mixture. J. Photochem. Photobiol. A Chem. 168, 133–141 (2004)

    Article  CAS  Google Scholar 

  42. Abou-Zied, O.K., Al-Shihi, O.I.K.: Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 130, 10793–10801 (2008)

    Article  CAS  Google Scholar 

  43. Pastukhov, A.V., Levchenko, L.A., Sadkov, A.P.: Spectroscopic study on binding of rutin to human serum albumin. J. Mol. Struct. 842, 60–66 (2007)

    Article  CAS  Google Scholar 

  44. Bourassa, P., Kanakis, C.D., Torantillis, P., Pollissiou, M.G., Tajmir-Riahi, H.A.: Resveratrol, genistein and curcumin bind bovine serum albumin. J. Phys. Chem. B 114, 3348–3354 (2010)

    Article  CAS  Google Scholar 

  45. Haq, I., Jenkins, T.C., Chowdhry, B.Z., Ren, J.S., Chaires, J.B.: In: Johnson, M.L., Ackers, G.K. (eds.) Methods in enzymology, vol. 323, pp. 373–405. Academic Press, San Diego (2000)

    Google Scholar 

  46. Ward, W.H., Holdgate, G.A.: Isothermal titration calorimetry in drug discovery. Prog. Med. Chem. 38, 309–376 (2001)

    Article  CAS  Google Scholar 

  47. O’Brien, R., Haq, I.: In: Ladbury, J.E., Doyle, M.L. (eds.) Biocalorimetry 2: applications of calorimetry in the biological sciences, pp. 3–34. John Wiley, Chichester (2004)

    Google Scholar 

  48. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

  49. Velázquez-Campoy, A., Freire, E.: ITC in the post-genomic era…? Priceless. Biophys. Chem. 115, 115–124 (2005)

    Article  Google Scholar 

  50. Dimitrova, M., Matsumura, H., Neitchev, V.: Kinetics of protein-induced flocculation of phosphatidylcholine liposomes. Langmuir 13, 6516–6523 (1997)

    Article  CAS  Google Scholar 

  51. Haberland, M.E., Reynolds, J.A.: Interaction of l-alpha-palmitoyl lysophosphatidylcholine with the AI polypeptide of high density lipoprotein. J. Biol. Chem. 250, 6636–6639 (1975)

    CAS  Google Scholar 

  52. Dimitrova, M., Matsumura, H.: Protein-induced leakage and membrane destabilization of phosphatidylcholine and phosphatidylserine liposomes. Colloids Surf. B 8, 287–294 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Research Council of the Mashhad Branch, Islamic Azad University is gratefully acknowledged. The authors thank Dr. Ljungberg for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshidkhan Chamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omidvar, Z., Asoodeh, A. & Chamani, J. Studies on the Antagonistic Behavior Between Cyclophosphamide Hydrochloride and Aspirin with Human Serum Albumin: Time-Resolved Fluorescence Spectroscopy and Isothermal Titration Calorimetry. J Solution Chem 42, 1005–1017 (2013). https://doi.org/10.1007/s10953-013-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0009-7

Keywords

Navigation